
Deep Learning for Logic Optimization Algorithms
Winston Haaswijk†∗, Edo Collins‡∗, Benoit Seguin§∗,

Mathias Soeken†, Frédéric Kaplan§, Sabine Süsstrunk‡, Giovanni De Micheli†

†Integrated Systems Laboratory, EPFL, Lausanne, VD, Switzerland
‡Image and Visual Representation Lab, EPFL, Lausanne, VD, Switzerland
§Digital Humanities Laboratory, EPFL, Lausanne, VD, Switzerland

∗These authors contributed equally to this work

Abstract—The slowing down of Moore’s law and the emergence
of new technologies puts an increasing pressure on the field
of EDA. There is a constant need to improve optimization
algorithms. However, finding and implementing such algorithms
is a difficult task, especially with the novel logic primitives and
potentially unconventional requirements of emerging technolo-
gies. In this paper, we cast logic optimization as a deterministic
Markov decision process (MDP). We then take advantage of
recent advances in deep reinforcement learning to build a system
that learns how to navigate this process. Our design has a
number of desirable properties. It is autonomous because it
learns automatically and does not require human intervention.
It generalizes to large functions after training on small examples.
Additionally, it intrinsically supports both single- and multi-
output functions, without the need to handle special cases. Finally,
it is generic because the same algorithm can be used to achieve
different optimization objectives, e.g., size and depth.

I. INTRODUCTION

In this paper we show how logic optimization algorithms can
be discovered automatically through the use of deep learning.
Deep learning is a machine learning approach based on neural
networks [1], [2]. In recent years the advance of deep learning
has revolutionized machine learning. Contrary to conventional
neural networks, deep neural networks (DNNs) stack many
hidden layers together, allowing for more complex processing
of training data [3]–[5]. Some of the key features of DNNs are
their capability to automatically determine relevant features and
build hierarchical representations given a particular problem
domain. This ability of DNNs removes the need for handcrafted
features. We take advantage of this ability by using DNNs to
automatically find features that are useful in logic optimization.
Recently, deep learning has been particularly successful in the
context of reinforcement learning [6], [7].

Our deep reinforcement learning algorithm is able to find
optimum representations for all 3-input functions, reaching
100% of potential improvement. It is also able to reach 83% of
potential improvement in size optimization of 4-input functions.
Additionally, we show that our model generalizes to larger
functions. After training on 4-input functions, it is able to
find significant optimizations in larger 6-input disjoint subset
decomposable (DSD) functions, reaching 89.5% of potential
improvement as compared to the state-of-the-art. Moreover,
after preprocessing the DSD functions, we are able to improve
on the state-of-the-art for 12% of DSD functions. A case study
of an MCNC benchmark shows that it can also be applied to
realistic circuits as it attains 86% of improvement compared

to the state-of-the-art. Finally, our algorithm is a generic
optimization method. We show that it is capable of performing
depth optimization, obtaining 92.6% of potential improvement
in depth optimization of 3-input functions. Further, the MCNC
case study shows that we unlock significant depth improvements
over the academic state-of-the-art, ranging from 12.5% to
47.4%.

II. BACKGROUND

A. Deep Learning

With ever growing data sets and increasing computational
power, the last decade has seen a dramatic rise in the
popularity of deep learning approaches. These methods achieve
state-of-the-art results on benchmarks from various fields,
such as computer vision, natural language processing, speech
recognition, genomics and many others [2].

Of particular interest is the class of convolutional neural
networks (CNNs) [3] for image inputs. At every layer, these
models use shift-invariant filters to perform convolution,
followed by a non-linear operation such as rectified-linearity
(ReLU) [5]. The weight sharing allowed by convolution, as
well as the gradient properties of the ReLU, allow for very
deep models to be trained with gradient descent.

B. Reinforcement Learning

Neural networks are usually trained under the paradigm
of supervised learning, i.e., on input-output pairs from some
ground-truth data set. A different paradigm is that of reinforce-
ment learning (RL), where an agent is not told what action it
should take, but instead receives a reward or penalty for actions.
Rewards and penalties are dictated by an external environment.
The goal of RL is for the agent to learn a policy (strategy)
that maximizes its reward.

Recent advances in deep learning have had a substantial
impact on RL, resulting in the emerging sub-field of deep
RL [6], [7]. In this context DNNs are used to approximate
functions which assign a score to each possible action. The
agent uses these scores to select which actions to take.

III. LOGIC OPTIMIZATION AS AN MDP

We can cast the process of logic network optimization
as a deterministic Markov decision process (MDP). Such a
process can also be thought of as a single-player game of
perfect information. The game consists of states and moves that



transition from one state to the next. Game states correspond
to logic networks. Moves in the game correspond to operations
on these networks. We say that a move is legal in a state
s if applying it to s results in an state s′, where s and s′

are logic networks with equivalent I/O behavior. We define
moves(s) to be the set of moves that are legal in a state
s: moves(s) = {a | a is legal in s}. Which moves are legal
depends on the type of logic network and the type of operations
we want to enable. In our work, we use the majority inverter
graphs (MIGs) as logic network data structures [8]. MIGs
correspond closely to a median (ternary majority) algebra,
which allows us to define a sound and complete move set.
Such a move set allows us to reach any point in the design
space.

We write s a−→ s′ to mean that applying move a ∈ moves(s)
to state s results in state s′. For every state, we define a special
move aε that corresponds to the identity function, such that,
s
aε−→ s. This means that the set of legal moves is never empty:

we can always apply the identity move. The game can now be
played by applying legal moves to states. A game can then be
characterized by an initial state s0, an output state sn, and a
sequence of n moves

s0
a1−→ s1

a2−→ . . . sn−1
an−−→ sn

Finally, we have a function score(s) that indicates how good
a state s is with respect to the optimization criterion. The
procedure outlined here corresponds to a generic optimization
procedure. For example, suppose we would like to perform size
optimization. In that case, score(s) could return the reciprocal
of the size of a logic network. This corresponds to a game
in which the objective is to find the minimum size network
achievable within n moves. Other optimization objectives are
defined analogously.

IV. APPLYING DEEP REINFORCEMENT LEARNING

Given an MIG state at step t, st, a move at leads to a new
state st+1. This transition is associated with a reward function
r(st, at), which is defined with respect to the optimization
objective. We can define this reward with respect to the score
function as r(st, at) = score(st+1)− score(st). As shorthand
we write rt = r(st, at).

Summing the rewards obtained during a sequence results in
a telescoping sum:

n∑
t=0

rt =

n−1∑
t

score(st+1)− score(st)

= score(sn)− score(s0)

Since the score of the initial state s0 is constant for all
sequences starting from it, satisfying the optimality criterion
corresponds to maximizing the expectation of the above sum
for every initial state.

To capture the notion that immediate rewards are generally
preferred to later ones, especially given a budget of n moves,
we follow the practice of discounting rewards over time. We

do this by introducing a time discount factor, 0 < λ ≤ 1. Our
optimization objective becomes:

argmax
π

Eπ

[
n∑
k=t

λkrk

]
(1)

The expression being optimized in known as the expected
return, and the expectation is taken with respect to π, known
as the policy. The policy is a function which given the state,
assigns every possible move a probability, and is parameterized
by θ. In other words, πθ(at|st) is the probability of applying
move at when the state st is observed. Consequently, finding
an optimal policy π translates to finding an optimal set of
parameters θ.

A. Learning Strategy

While some methods learn the policy indirectly, in this work
we chose to learn the distribution directly with the technique
of Policy Gradient (PG) [9]. The PG parameter update is given
by:

θt+1 = θt + α (rt∇πθ(at|st)) (2)

where α ∈ R is the learning rate (α > 0). This update
embodies the intuition that a positively-rewarded move should
be positively reinforced—by following the gradient of the
move’s log-probability under the current policy—and inversely
negatively-rewarded moves should be discouraged.

B. Deep Neural Network Model

We model our policy function as a deep neural network,
based on Graph Convolution Networks (GCN) [10]. For every
node in the MIG we would like to derive node features, based
on a local neighborhood, that capture information that is useful
towards predicting which move is beneficial to apply. We
do derive these features with a series of L transformation,
corresponding to as many graph convolution layers.

The `th layer in our network maintains a p× d` matrix of
node features. Every row of the matrix represents one of the p
nodes in the MIG as a d-dimensional feature vector. The `th
layer transforms its input feature matrix as follows:

F (`+1) = σ(AF (`)W (`)) (3)

where A is the graph adjacency matrix and σ is an element-wise
nonlinearity, in our case ReLU. Using the adjacency matrix
here results propagation of information between neighboring
nodes, meaning that concatenating L layers has the effect of
expanding the neighborhood from which the final node features
are derived to include Lth degree neighbors. We call L the
size of the receptive field.

We initialize the first feature matrix with p-dimensional one-
hot vector representations for every node in the graph, i.e.,
d0 = p. This yields the identity matrix, i.e., F (0) = I .

After propagating through all CGN layers, we use two move-
dependent fully-connected layers with a final normalization
layer to obtain probabilities for every available move.



C. Training Procedure

The set of policy parameters θ corresponds to the parameters
of the DNN described above. Initially θ is set to random
values, and it is through playing the game that the parameters
are updated towards optimality. Training thus proceeds by
performing sequences of n moves, called rollouts. For each
move in a rollout we calculate its base reward with the reward
function, and its associated discounted return.

We sample initial states from which to begin rollouts from a
designated set of initial states. This set is manually initialized
with a seed of MIGs, e.g. MIGs corresponding to the Shannon-
decomposition of all 3-input Boolean functions.

At every iteration, we augment the set of initial states by
randomly sampling MIGs from the rollout history, such that
future rollouts may start at a newly-derived state.

V. EXPERIMENTS

We start our experiments in Section V-A by training a
model to perform size optimization of small functions. In
Section V-B and Section V-D we show the potential for our
algorithm to generalize and scale by applying it to a set of
DSD functions and a circuit from the MCNC benchmark suite,
respectively. Finally, we show that it can also be used for depth
optimization in Section V-C. We perform all experiments using
a single neural network architecture, consisting of 4 GCN
layers followed by 2 fully-connected layers. The results of the
experiments are summarized in Table I and Table II.

A. Size Optimization
The data set D = {(x1, y1), . . . , (x256, y256)} consists

of 256 tuples (xi, yi), where xi is the MIG corresponding
to the Shannon decomposition of the i-th 3-input function,
and yi is the optimum MIG representation of that function.
We generate the size optimum MIGs using the CirKit logic
synthesis package [11], [12]. We initialize the training set
X = {x1, . . . , x256}, so that we start training on the Shannon
decompositions. The optima Y = {y1, . . . , y256} are used
only for evaluation purposes. We set n = 5 and perform 100
iterations over the training set, augmenting it in every iteration
as described in Section IV-C. After training, we use the model
to perform 20 steps of inference on each of the xi, obtaining
the MIG ŷi, and compare the results to the optima yi. We
find that in every case the model is able to achieve optimum
size, i.e., score(ŷi) = score(yi) for all i (1 ≤ i ≤ 256). This
confirms that the model and training procedure are able to
learn the strategy required to perform size optimization on
MIGs.

We perform inference using an NVIDIA GeForce GTX
TITAN X GPU. The run time of one inference step on a 3-
input graph is approximately 5 ms, making total inference run
time 20 × 5 = 100ms. In practice we perform inference in
parallel on batches of 50 graphs at a time, making the average
total inference time 2ms per graph. Inference run times of the
experiments below are similar, scaled polynomially with the
size of the input graphs.

At this point it becomes useful to introduce the notion of
potential improvement. For any pair (x, y) ∈ D, the maximum

potential size improvement that can be made from a Shannon de-
composition x to an MIG optimum is score(x)−score(y). The
total potential improvement for D is

∑
i(score(xi)−score(yi)).

Since the model finds the optima for all 3-input functions, we
say that it reaches 100% of potential improvement.

Next, we run the same experiment for all 4-input functions.
The data set now consists of all 65536 4-input functions,
i.e., D = {(x1, y1), . . . , (x65536, y65536)}. We run the training
procedure to convergence. We find that the model is able to
find the global size optima for 24% of the functions. For other
functions it does not reach the full optima within 20 inference
steps. However, it reaches 83% of total potential improvement.
This implies that for most functions the model is nearly optimal.

B. Generalization
The experiments in Section V-A show that our model and

training procedure perform well on size optimization. However,
in those experiments evaluation is done on the training set,
i.e., the model is trained to optimize 3- and 4-input functions
and its size optimization performance is evaluated on the same
functions. In this section we present an experiment to verify
the capacity of our model to generalize.

In this experiment we use the trained 4-input model
from Section V-A to perform inference on a large set
containing 40,195 6-input (DSD) functions. We now have
D = {(x1, y′1), . . . , (x40,195, y′40,195)}. Due to the hardness
of the MCSP, for this experiment it becomes computationally
infeasible to find the optimum yi. Therefore, we use the resyn2
command from the state-of-the-art ABC logic synthesis package
to obtain heuristic optima [13]. This resyn2 command in ABC
is an efficient high-effort optimization script that combines
several nontrivial logic optimization heuristics and algorithms.
We now compute potential improvement with respect to these
strong heuristic optima.

The average size of the Shannon decompositions is 25.636
MIG nodes. Using the model trained on 4-input functions, we
perform 100 inference steps to reach an average size of 13.826
nodes, improving average MIG size by approximately 46%.
The average size of the resyn2 heuristic optima is 12.442.
This means that by generalizing the models to previously
unseen MIGs, we are still able to obtain 89.5% of potential
improvement. Interestingly, our model is able to improve
beyond the optima found by resyn2 for 5% of the graphs.

Next, we examine if our model is able to go further beyond
the heuristic resyn2 results, by applying inference directly
to those results instead of the Shannon decompositions. In
this case, our average size improves to 12.243 nodes. The
model is able to improve on resyn2 for approximately 12% of
functions. These improvements range between 1 and 9 nodes
of improvement.

C. Depth Optimization
This experiment explores the generic nature of our optimiza-

tion algorithm, focusing on depth- instead of size optimization.
In this experiment, we again look at all 3-input functions.
We have D = {(x1, y1), . . . , (x256, y256)}, where the yi
now correspond to depth-optimum MIGs. Training proceeds
analogously to the 3-input size optimization experiment of



TABLE I: A summary of the experimental results. The conventional run time column refers to the run time of the optimization
algorithm to which we compare for each benchmark (ie. exact synthesis run time or resyn2 run time in the case of C1355).
Inference run time shows the corresponding inference run time used by our neural network model obtain its results. In the (PP)
experiment we apply our algorithm after pre-processing with resyn2. In one case our model achieves potential improvement
above 100%. This means that it finds additional improvement as compared to resyn2.

Experiment Optimization Objective Potential Improvement % Conventional Synthesis Run Time (s) Inference Run Time (s)

3-input functions SIZE 100.00% 0.047 0.010
3-input functions DEPTH 92.60% 0.047 0.010
4-input functions SIZE 83.00% 1.002 0.026
6-input DSD functions SIZE 89.50% 0.053 0.090
6-input DSD functions (PP) SIZE 101.60% 0.053 0.090

Section V-A. After training, we perform 20 inference steps of
inference on all xi. Within 20 steps the model is able to find
depth optima for 87.5% of the functions and obtains 92.6% of
the total potential improvement.

For this experiment, that depth is a global feature of MIGs.
Therefore, our node representations consist of features derived
from a local receptive field. As such, it is likely that they do
not contain global depth information. In Section V-D we add
critical path features in order to perform depth optimization
for a number of circuits from the MCNC benchmark suite.
The one-hot representation of each node is augmented with a
single binary feature indicating presence on the critical path.
D. MCNC Case Study

The previous experiments focus on the optimization of
relatively small functions. The experiments in this section
explore the potential of our approach to scale to more realistic
benchmarks. We select a subset of circuits from the MCNC
benchmark suite and train our model to optimize them.
We select this subset due to memory limitations of current
implementation, preventing us from working on some of larger
MCNC functions. However, this is strictly a technicality of our
current implementation, and not a fundamental limitation of
our approach.

We experiment with both size and depth optimization. In the
first experiment we perform size optimization on the C1355
benchmark. We train the model for 250 iterations on this single
circuit. Using 200 inference steps the model is able to reduce
the size of the circuit by 98 nodes, reducing the circuit from its
original size of 504 nodes down to 406 nodes. Analogous to
Section V-B, we use resyn2 as the heuristic optimal. It reduces
the size of C1355 to 390 nodes. In other words, our model is
able to obtain 86% of potential improvement as compared to
the state-of-the-art.

In the second experiment we select 3 other benchmarks and
train a DNN model to perform depth optimization on them.
After training, we use 50 inference steps to optimize depth.
The results are summarized in Table II. We obtain significant
improvements compared to resyn2, ranging from 12.5% to
47.5%, with an average of 24.7%.

VI. CONCLUSIONS

We show how machine learning can be applied to algebraic
logic optimization, and the feasibility of creating an automatic
and generic optimization procedure that obtains results close
to—and even surpassing—those of heavily specialized state-
of-the-art algorithms. Moore’s law is slowing down, complex

TABLE II: Depth optimization on three circuits of the MCNC
benchmark suite. Our trained neural networks model (DNN)
outperforms resyn2 (ABC) in all of these cases.

Benchmark I/O Initial depth ABC DNN Improvement

b9 41/21 10 8 7 12.5%
count 35/16 20 19 10 47.4%
my adder 33/17 49 49 42 14.3%

new technologies are emerging, and the pressure on EDA
tools is increasing. Going forward, algorithms that quickly and
autonomously learn new optimizations and heuristics will be
invaluable tools to drive progress in electronics and EDA. In
this paper, we take a first step in that direction.

ACKNOWLEDGMENTS
This research was supported by the Swiss National Science

Foundation (200021-169084 MAJesty).
REFERENCES

[1] L. Chua and T. Roska, “The CNN Paradigm,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 40,
no. 3, pp. 147–156, 1993.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[5] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp. 807–814.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529–533, 2015.

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[8] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter
graph: A novel data-structure and algorithms for efficient logic optimiza-
tion,” in Design Automation Conference, 2014, pp. 194:1–194:6.

[9] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour et al., “Policy
gradient methods for reinforcement learning with function approximation.”
in NIPS, vol. 99, 1999, pp. 1057–1063.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[11] M. Soeken, “CirKit,” https://github.com/msoeken/cirkit.
[12] M. Soeken, L. Amarù, P.-E. Gaillardon, and G. De Micheli, “Exact syn-

thesis of majority-inverter graphs and its applications,” IEEE Transactions
on CAD, 2017.

[13] A. Mishchenko, “ABC,” https://bitbucket.org/alanmi/abc.


