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Abstract—The slowing down of Moore’s law and the emergence
of new technologies puts an increasing pressure on the field
of EDA in general and the logic synthesis and optimization
community in particular. There is a constant need to improve
optimization heuristics. However, finding and implementing such
heuristics is a difficult task, especially with the novel logic prim-
itives and potentially unconventional requirements of emerging
technologies. In this paper, we show how logic optimization may
be recast as a game. We then take advantage of recent advances in
deep reinforcement learning to build a system that learns how to
play this game. Our design has a number of desirable properties.
It is autonomous because it learns automatically, and does not
require handcrafted heuristics or other human intervention. It
generalizes to large multi-output Boolean functions after training
on small examples. Additionally, it natively supports both single-
and multi-output functions, without the need to handle special
cases. Finally, it is generic because the same algorithm can be
used to achieve different optimization objectives, e.g., size and
depth.

I. INTRODUCTION

Over the last decades, advances in logic synthesis and
optimization have been key factors in enabling technological
progress. The progress of Moore’s law has been aided by the
data structures and algorithms developed by the logic synthesis
community. In recent years, this progress has slowed down, due
to limitations of CMOS technology. At the same time, emerging
technologies [1]–[3] provide new opportunities but may have
different characteristics (e.g., correspond to different logic
primitives) than conventional approaches. Seeking alternatives,
and exploiting the potential of emerging technologies, puts
additional pressure on the tools of logic synthesis to adapt and
improve. Methods that take advantage of the potential of new
technologies can unlock significant improvements [4], [5].

Many different logic synthesis techniques have been suc-
cessfully developed and applied. They range from exact to
heuristic, and from Boolean to algebraic [6]–[12]. Exact
methods do not scale well, meaning that heuristics are applied
by all practical optimization methods. Heuristics are, almost by
definition, incomplete in the sense that they do not guarantee
optimal results. In fact, this was recently shown for algorithms
that use state-of-the-art heuristics [13]. Moreover, discovering
and implementing good heuristics is difficult and will only
become more difficult with the novel logic primitives and
unconventional requirements of emerging technologies. Further,
different design goals, such as size and depth, require different
heuristics [10], [14]. Finally, it is difficult to combine heuristics

in optimization scripts. For example, in general it is not
obvious in which order they should be applied. In summary, the
discovery of good heuristics is vital to the continued success
of logic synthesis and optimization.

This paper shows for the first time how heuristics for logic
optimization can be discovered automatically through the use
of machine learning. Moving away from handcrafted heuristics
avoids the difficulties facing optimization algorithms described
above. The heuristics found by machine learning can improve
over time, by using more time and training data. Finally, as
we demonstrate in this paper, the same machine learning
algorithm can be used to learn heuristics corresponding to
different optimization objectives.

In recent years the advance of deep learning has revolution-
ized machine learning. Deep learning [15] is a machine learning
approach based on neural networks. Contrary to conventional
neural networks, deep neural networks (DNNs) stack many
hidden layers together, allowing for more complex processing
of training data [16], [17]. Some of the key features of DNNs
are their capability to automatically determine relevant features
and build hierarchical representations given a particular problem
domain. This ability of DNNs removes the need for handcrafted
features. We take advantage of this ability by using DNNs to
automatically find features that are useful in logic optimization.

Deep learning has been particularly successful in the context
of reinforcement learning [18], [19]. Essentially, in reinforce-
ment learning an agent learns how to behave with respect
to some environment by taking actions and being rewarded
or punished by the environment depending on how good the
chosen actions are [20]. In other words, the agent learns how
to interact with an environment without explicitly being told
how to do so. Recently, deep reinforcement learning was used
to build the AlphaGo system, which became the first computer
program to defeat a human professional player in the full-sized
game of Go [19].

In this paper, we show how the problem of logic optimization
can be recast as a game. We use the tools of deep reinforcement
learning to train a computer program to perform logic optimiza-
tion. The program learns how to perform these optimizations
completely autonomously, without any handcrafted heuristics.

We show how our algorithm is able to find optimum
representations for all 3-input functions, reaching 100% of
potential improvement. It is also able to reach 83% of
potential improvement in size optimization of 4-input functions.



Additionally, we show that our model generalizes to larger
functions. After training on 4-input functions, it is able to
find significant optimizations in larger 6-input disjoint subset
decomposable (DSD) functions, reaching 89.5% of potential
improvement as compared to the state-of-the-art. Moreover,
after preprocessing the DSD functions, we are able to improve
on the state-of-the-art for 12% of DSD functions. A case study
of an MCNC benchmark shows that it can also be applied to
realistic circuits as it attains 86% of improvement compared
to the state-of-the-art. Finally, our algorithm is a generic
optimization method. We show that it is capable of performing
depth optimization, obtaining 92.6% of potential improvement
in depth optimization of 3-input functions. Further, the MCNC
case study shows that we are able to unlock significant depth
improvements over the academic state-of-the-art, ranging from
12.5% to 47.4%,.

II. BACKGROUND

This paper relies on concepts from different fields. Our goal
in this section is to provide the conceptual context to understand
the rest of the paper. Pointers to relevant literature are provided
for the interested reader. We do assume some familiarity with
concepts from logic synthesis, such as the notion of a logic
network.

A. Majority Algebra and MIGs

The Boolean majority operator

〈xyz〉 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

has many interesting properties. Knuth calls it “probably the
most important operator in the universe,” [21]. One property is
that it can be used to define a sound and complete Boolean
algebra as follows (due to [14]):

Ω =



Commutativity− Ω.C

〈xyz〉 = 〈yxz〉 = 〈zyx〉
Majority− Ω.M{
〈xxz〉 = x

〈xx̄z〉 = z

Associativity− Ω.A

〈xu〈yuz〉〉 = 〈zu〈yux〉〉
Distributivity− Ω.D

〈xy〈uvz〉〉 = 〈〈xyu〉〈xyv〉z〉
Inverter Propagation− Ω.I

〈xyz〉 = 〈x̄ȳz̄〉

Soundness means that, given an expression e from the majority
algebra, the application of any of the rules that apply to that
expression results in an equivalent expression e′. For example,
suppose that e = 〈x1x̄1x2〉. We can apply the majority axiom
to obtain the equivalent expression e′ = x2. Completeness
means that, given any two equivalent expressions e and e′,
there exists some sequence of rules from the algebra that can
be used to transform e into e′, or vice versa.

The Majority Inverter Graph (MIG) is a data structure that
corresponds closely to the majority algebra [14], [22]. An MIG
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Fig. 1: A side-by-side comparison of an equivalent AIG and
MIG. The AIG on the left, and the MIG on the right both
compute the function f = x⊕ y ⊕ z. Inversion is indicated by
bubbles on the edges. The MIG represents the function more
compactly due to the expressiveness of the majority operator.

is a directed acyclic graph (DAG) in which every node (vertex)
corresponds to a majority operator. Edges have an optional
complementation attribute that indicates inversion. Because the
majority operator includes the AND and OR operators, MIGs
include data structures such as And-Inverter Graphs (AIGs).
Due to this inclusion and the addition of the expressive majority
operator, MIGs are a more compact logic representation than
such conventional structures. Fig. 1 shows an example of an
MIG, comparing it to an equivalent AIG.

MIGs correspond closely to the majority algebra. We can
manipulate them using the rules of this algebra, providing a
way of operating on MIGs that is sound and complete. This
property is desirable for logic optimization. When we use
MIGs as our logic representation we can reach any point in the
design space using the rules from the algebra. This makes them
a convenient representation for logic networks in the context
of logic optimization. Algebraic and Boolean manipulation of
MIGs has been shown to unlock significant improvements over
the state-of-the-art in logic optimization [14], [22].

B. Deep Learning

With ever growing data sets and increasing computational
power, the last decade has seen a dramatic rise in the
popularity of deep learning approaches. These methods achieve
state-of-the-art results on benchmarks from various fields,
such as computer vision, natural language processing, speech
recognition, genomics and many others [15].

The success of these models lies in their ability to learn
powerful hierarchical representations directly from the raw
data. These representations naturally encode domain-specific
invariants. Thus, such transformations effectively linearize
complex problems such as classification.

Of particular interest is the class of convolutional neural
networks (CNNs) [16] for image inputs. At every layer,
these models use shift-invariant filters to perform convolution,
followed by a non-linear operation such as rectified-linearity
(ReLU) [17]. The weight sharing allowed by convolution, as



well as the gradient properties of the ReLU, allow for very
deep models to be trained with gradient descent.

In this paper we use a generalization of CNNs aimed at
processing graph input, as described in Section IV-B.

C. Reinforcement Learning

Neural networks are usually trained under the paradigm
of supervised learning, i.e., on input-output pairs from some
ground-truth data set. A different paradigm is that of reinforce-
ment learning (RL), where an agent is not told what action it
should take, but instead receives a reward or penalty for actions.
Rewards and penalties are dictated by an external environment.
The goal of RL is for the agent to learn a policy (strategy)
that maximizes its reward. Although it has many applications,
reinforcement learning is often applied in the context of game
playing, going back as far as 1959 [23].

Recent advances in deep learning have had a substantial
impact on RL, resulting in the emerging sub-field of deep RL.
In this context DNNs are used to approximate functions which
assign a score to each possible action. The agent uses these
scores to select which actions to take.

A recent example of this ability has been demonstrated in
[18], where the authors trained a DNN to play 49 different
Atari games from pixel input alone. With this technique they
achieved comparable performance with human experts across
all games. Building on this success, a deep RL agent was
recently shown to have attained superhuman performance in
the challenging game of Go [19].

III. LOGIC OPTIMIZATION AS A GAME

In logic optimization we are given an input logic network N ,
and are asked to produce an equivalent logic network N ′ that is
better than the input network. Which networks are considered
better depends on the optimization objective.

We can cast the process of optimization as a single-player
game as follows. The game consists of states and moves
that transition from one state to the next. States in the logic
optimization game correspond to logic networks. Moves in the
game correspond to operations on these networks. We say that
a move is legal in a state s if applying it to s results in an
state s′, where s and s′ are logic networks with equivalent I/O
behavior. As states s and s′ correspond to logic networks, they
are equivalent if and only if the logic networks s and s′ are
equivalent. We define moves(s) to be the set of moves that
are legal in a state s: moves(s) = {a | a is legal in s}. Which
moves are legal depends on the type of logic network and the
type of operations we want to enable.

We write s a−→ s′ to mean that applying move a ∈ moves(s)
to state s results in state s′. For every state, we define a special
move aε that corresponds to the identity function, such that,
s
aε−→ s. This means that the set of legal moves is never empty:

we can always apply the identity move. The game can now be
played by applying legal moves to states. A game can then be
characterized by an initial state s0, an output state sn, and a
sequence of n moves

s0
a1−→ s1

a2−→ . . . sn−1
an−−→ sn

s0 

sopt 

Rest of search 

space 

Fig. 2: An optimization game decision tree of height n and
breadth b, rooted at initial state s0. The highlighted path
indicates an optimum sequence of moves.

Given a sequence seq = (a1, . . . , an) we write

s0
seq
=⇒ sn ⇔ s0

a1−→ s1
a2−→ . . .

an−−→ sn

We use | seq | to denote the length of a sequence.
Finally, we have a function score(s) that indicates how good

a state s is with respect to the optimization criterion. With
these definitions, we are now ready to propose the following
game: given an input state s0, find a sequence of moves seq
such that | seq | = n, and for all sequences seq′, | seq′ | = n:

s0
seq
==⇒ sn ∧ s0

seq′

==⇒ s′n ⇒ score(sn) ≥ score(s′n) (1)

We call these kinds of games, defined for fixed n, optimiza-
tion games. Such games correspond to generic optimization
procedures. For example, suppose we would like to perform
size optimization. In that case, score(s) could return the
reciprocal of the size of a logic network. This corresponds to
the objective of finding the minimum size network achievable
within n moves. Other optimization objectives can be defined
analogously. We say that an optimization game is solved or
won when we have found a sequence of n moves that results
in a maximum score.

An n-step optimization game is a game of perfect informa-
tion. It gives rise to a decision tree, rooted at the initial state s0.
Fig. 2 shows what such a decision tree looks like. It contains
approximately bn sequences of moves, where b is the game’s
breadth (approximate number of legal moves per state) [19].

A. MIGs as Game States
MIGs are a natural state representation for logic optimization

through game playing. They can represent arbitrary combina-
tional logic networks. Moreover, we can compute a set of
legal moves for an MIG directly from the majority algebra
Ω. Finally, we know that the majority algebra is sound and
complete. Therefore, the sets of legal moves are also sound
and complete. Any transformation between two equivalent
MIGs that is achievable by a sequence of n applications of
the majority axioms can be achieved by playing a game of n
moves on MIGs.
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InverterPropagation(3)

InverterPropagation(4)

Majority(4)

Associativity(4, 3, 0)

Associativity(4, 3, 2)

DistributivityL→R(4, 3, 0)

DistributivityL→R(4, 3, 1)

DistributivityL→R(4, 3, 2)

Fig. 3: An MIG and its associated set of legal moves. The
inputs are indicated by double-lined circles, as is the output
node which is explicitly shown here.

An axiom that applies to an MIG induces a legal move.
For example, suppose that an MIG M contains a node v
with 2 equal fanins. The majority axiom applies at that
node. Hence, we can say that the move “Apply the majority
axiom at node v” is legal. This notion can be expressed as
Majority(v) ∈ moves(M). Thus, moves can be represented by
simple structures that refer to axioms and nodes. To compute
the complete set of moves, we then traverse M and collect
for each node the moves induced by the axioms that apply
at that node. As the majority axioms are equalities, moves
may be applied in two directions: the left-hand side of an
equality may be rewritten to the right-hand side, and vice
versa. For example, the distributivity axiom induces two move
types: DistributivityL→R, and DistributivityR→L. These
correspond to rewriting majority algebra equations from left
to right and from right to left, respectively.

Fig. 3 shows an example of an MIG corresponding to a
state of the game, as well as the set of moves that are legal in
that state. Moves such as Majority are easy to detect. Other
moves, such as Associativity may require closer inspection
of the graph.

In our experiments, we added a number of derived
moves from the majority algebra axioms. Adding these
moves (Relevance, Complementary Associativity, and
Substitution) is helpful because it allows us to find shorter
sequences to optimal MIGs. Their derivation can be found in
[14].

B. Playing Optimization Games

So far, we have seen how logic optimization may be viewed
as a perfect information optimization game. These games can
be used to optimize a wide variety of objectives. Moreover,
they may always be won through exhaustive search. Obviously,
such a strategy is in general infeasible, as the size of the search
space grows exponentially with the number of moves. Hence,
we need heuristics to prune the search tree. In other words,
we want to develop strategies (heuristics) for playing the game
that are less computationally expensive than exhaustive search,
but that still lead to good results.

The generic nature of optimization games is a desirable
property. It makes specifying potentially exotic optimization
objectives straightforward. A drawback is that developing
heuristics for optimization in this setting is a nontrivial task, as
we wish to perform well on a wide variety of games. One way
to approach this is to define new heuristics for different score
functions. However, this means that we have to develop new
strategies every time our objectives change. Another approach
might be to develop very generic heuristics. This is a difficult
task, and has the added drawback that specialized strategies
are likely to outperform a generic strategy in their specific
domains. Therefore, we propose the use of machine learning
to discover these heuristics in a flexible and automated way.

C. Global Optimality

As a consequence of the soundness and completeness of the
majority algebra, there always exists a sequence seq, such that
s0

seq
=⇒ sopt, where sopt is some globally optimum state ac-

cording to score(sopt). However, because | seq | may be much
larger than n, even if we play the optimization game optimally,
we are not guaranteed to find sopt. Moreover, depending on the
particular score function it may be computationally expensive,
or impossible, to know whether any state is a global optimum.
For example, we may want to know if an MIG is a global
size optimum. This involves solving the Minimum Circuit Size
Problem (MCSP), which is conjectured to be intractable [24].

IV. APPLYING DEEP REINFORCEMENT LEARNING

Given an MIG state at step t, st, a move at leads to a new
state st+1. This transition is associated with a reward function
r(st, at), which is defined with respect to the optimization
objective. We can define this reward with respect to the score
function as r(st, at) = score(st+1)− score(st). As shorthand
we write rt = r(st, at).

Summing the rewards obtained during a sequence results in
a telescoping sum:

n∑
t=0

rt =

n−1∑
t

score(st+1)− score(st)

= score(sn)− score(s0)

Since the score of the initial state s0 is constant for all
sequences starting from it, we see that satisfying the optimality
criterion in (1) corresponds to maximizing the expectation of
the above sum for every initial state.

To capture the notion that immediate rewards are generally
preferred to later ones, especially given a budget of n moves,
we follow the practice of discounting rewards over time. We
do this by introducing a time discount factor, 0 < λ ≤ 1. Our
optimization objective becomes:

argmax
π

Eπ

[
n∑
k=t

λkrk

]
(2)

The expression being optimized in known as the expected
return, and the expectation is taken with respect to π, known
as the policy. The policy is a function which given the state,
assigns every possible move a probability, and is parameterized



by θ. In other words, πθ(at|st) is the probability of applying
move at when the state st is observed. Consequently, finding
an optimal policy π translates to finding an optimal set of
parameters θ.

A. Learning Strategy
While some methods learn the policy indirectly, in this work

we chose to learn the distribution directly with the technique of
Policy Gradient (PG) [25]. The PG parameter update is given
by:

θt+1 = θt + α (rt∇πθ(at|st)) (3)

where α ∈ R is the learning rate (α > 0). This update
embodies the intuition that a positively-rewarded move should
be positively reinforced—by following the gradient of the
move’s log-probability under the current policy—and inversely
negatively-rewarded moves should be discouraged.

B. Deep Neural Network Model
We model our policy function as a deep neural network,

based on Graph Convolution Networks (GCN) [26]. For every
node in the MIG we would like to derive node features, based
on a local neighborhood, that capture information that is useful
towards predicting which move is beneficial to apply. We
do derive these features with a series of L transformation,
corresponding to as many graph convolution layers.

The `th layer in our network maintains an p× d` matrix of
node features. Every row of the matrix represents one of the p
nodes in the MIG as a d-dimensional feature vector. The `th
layer transforms its input feature matrix as follows:

F (`+1) = σ(AF (`)W (`)) (4)

where A is the graph adjacency matrix and σ is an element-wise
nonlinearity, in our case ReLU. Using the adjacency matrix
here results propagation of information between neighboring
nodes, meaning that concatenating L layers has the effect of
expanding the neighborhood from which the final node features
are derived to include Lth degree neighbors. We call L the
size of the receptive field.

We initialize the first feature matrix with p-dimensional one-
hot vector representations for every node in the graph, i.e.,
d0 = p. This yields the identity matrix, i.e., F (0) = I .

After propagating through all CGN layers, we use two move-
dependent fully-connected layers with a final normalization
layer to obtain probabilities for every available move.

C. Training Procedure
The set of policy parameters θ corresponds to the parameters

of the DNN described above. Initially θ is set to random
values, and it is through playing the game that the parameters
are updated towards optimality. Training thus proceeds by
performing sequences of n moves, called rollouts. For each
move in a rollout we calculate its base reward with the reward
function, and its associated discounted return.

We sample initial states from which to begin rollouts from a
designated set of initial states. This set is manually initialized
with a seed of MIGs, e.g. MIGs corresponding to the Shannon-
decomposition of all 3-input Boolean functions.

At every iteration, we augment the set of initial states by
randomly sampling MIGs from the rollout history, such that
future rollouts may start at a newly-derived state.

V. EXPERIMENTS

We start our experiments in Section V-A by training a model
to perform size optimization of small functions. In Section V-B
and Section V-D we show the potential for our algorithm to
generalize and scale by applying it to a set of DSD functions
and a circuit from the MCNC benchmark suite, respectively.
Finally, we demonstrate the generic nature of our algorithm
by showing that it can also be used for depth optimization in
Section V-C.

We perform all experiments using a single neural network
architecture, consisting of 4 GCN layers followed by 2
fully-connected layers. The results of the experiments are
summarized in Table I and Table II.

A. Size Optimization
The data set D = {(x1, y1), . . . , (x256, y256)} consists

of 256 tuples (xi, yi), where xi is the MIG corresponding
to the Shannon decomposition of the i-th 3-input function,
and yi is the optimum MIG representation of that function.
We generate the size optimum MIGs using the CirKit logic
synthesis package [27], [28]. We initialize the training set
X = {x1, . . . , x256}, so that we start training on the Shannon
decompositions. The optima Y = {y1, . . . , y256} are used
only for evaluation purposes. We set n = 5 and perform 100
iterations over the training set, augmenting it in every iteration
as described in Section IV-C. After training, we use the model
to perform 20 steps of inference on each of the xi, obtaining
the MIG ŷi, and compare the results to the optima yi. We
find that in every case the model is able to achieve optimum
size, i.e., score(ŷi) = score(yi) for all i (1 ≤ i ≤ 256). This
confirms that the model and training procedure are able to
learn the strategy required to perform size optimization on
MIGs.

We perform inference using an NVIDIA GeForce GTX
TITAN X GPU. The run time of one inference step on a 3-
input graph is approximately 5 ms, making total inference run
time 20 × 5 = 100ms. In practice we perform inference in
parallel on batches of 50 graphs at a time, making the average
total inference time 2ms per graph. Inference run times of the
experiments below are similar, scaled polynomially with the
size of the input graphs.

Note that the model finds all optima, despite never being
presented with them, by simply playing the optimization game.
Interestingly, it finds all optima within at most 8 moves from the
initial Shannon decomposition. Fig. 4 shows an example of such
a model inference, demonstrating how the model moves from
an initial decomposition to a size optimum MIG representation.

At this point it becomes useful to introduce the notion of
potential improvement. For any pair (x, y) ∈ D, the maximum
potential size improvement that can be made from a Shannon de-
composition x to an MIG optimum is score(x)−score(y). The
total potential improvement for D is

∑
i(score(xi)−score(yi)).

Since the model finds the optima for all 3-input functions, we
say that it reaches 100% of potential improvement.
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Fig. 4: From top-to-bottom, left-to-right, a sequence of 4 moves found by our model that optimizes an MIG from a Shannon
decomposition to its optimum MIG representation.



TABLE I: A summary of the experimental results. The conventional run time column refers to the run time of the optimization
algorithm to which we compare for each benchmark (ie. exact synthesis run time or resyn2 run time in the case of C1355).
Inference run time shows the corresponding inference run time used by our neural network model obtain its results. In the (PP)
experiment we apply our algorithm after pre-processing with resyn2. In one case our model achieves potential improvement
above 100%. This means that it finds additional improvement as compared to resyn2.

Experiment Optimization Objective Potential Improvement % Conventional Synthesis Run Time (s) Inference Run Time (s)

3-input functions SIZE 100.00% 0.047 0.010
3-input functions DEPTH 92.60% 0.047 0.010
4-input functions SIZE 83.00% 1.002 0.026
6-input DSD functions SIZE 89.50% 0.053 0.090
6-input DSD functions (PP) SIZE 101.60% 0.053 0.090

Next, we run the same experiment for all 4-input functions.
The data set now consists of all 65536 4-input functions,
i.e., D = {(x1, y1), . . . , (x65536, y65536)}. We run the training
procedure to convergence. We find that the model is able to
find the global size optima for 24% of the functions. For
other functions it does not reach the full optima within 20
inference steps. However, it reaches 83% of total potential
improvement. This implies that for most functions the model
is nearly optimal. Future work will explore the effect of
different network architectures and more sophisticated RL
training algorithms.

B. Generalization
The experiments in Section V-A show that our model and

training procedure perform well on size optimization. However,
in those experiments evaluation is done on the training set,
i.e., the model is trained to optimize 3- and 4-input functions
and its size optimization performance is evaluated the same
functions. In this section we present an experiment to test the
capacity of our model to generalize. Intuitively, this capacity is
important because the space of possible MIGs is infinite, even
for the small number of 3-input functions. As such, training
cannot possibly explore all possible states that the model may
encounter. Therefore, the model should be able to pick good
moves even when confronted with previously unseen states.
There is another useful aspect to generalization. In theory, we
could always train a model specifically on the benchmarks
that we wish to optimize. However, training is a potentially
expensive operation. Thus, in order to save time, we may want
to reuse previously trained models.

In this experiment we use the trained 4-input model from
Section V-A to perform inference on a large set contain-
ing 40,195 6-input (DSD) functions [29]. We now have
D = {(x1, y′1), . . . , (x40,195, y

′
40,195)}. Due to the hardness

of the MCSP, for this experiment it becomes computationally
infeasible to find the optimum yi. Therefore, we use the resyn2
command from the state-of-the-art ABC logic synthesis package
to obtain heuristic optima [30]. This resyn2 command in ABC
is an efficient high-effort optimization script that combines
several nontrivial logic optimization heuristics and algorithms.
We now compute potential improvement with respect to these
strong heuristic optima.

The average size of the Shannon decompositions is 25.636
MIG nodes. Using the model trained on 4-input functions, we
perform 100 inference steps to reach an average size of 13.826

nodes, improving average MIG size by approximately 46%.
The average size of the resyn2 heuristic optima is 12.442.
This means that by generalizing the models to previously
unseen MIGs, we are still able to obtain 89.5% of potential
improvement. Interestingly, our model is able to improve
beyond the optima found by resyn2 for 5% of the graphs.

Next, we examine if our model is able to go further beyond
the heuristic resyn2 results, by applying inference directly
to those results instead of the Shannon decompositions. In
this case, our average size improves to 12.243 nodes. The
model is able to improve on resyn2 for approximately 12% of
functions. These improvements range between 1 and 9 nodes
of improvement.

C. Depth Optimization

This experiment explores the generic nature of our optimiza-
tion algorithm, focusing on depth- instead of size optimization.
In this experiment, we again look at all 3-input functions.
We have D = {(x1, y1), . . . , (x256, y256)}, where the yi
now correspond to depth-optimum MIGs. Training proceeds
analogously to the 3-input size optimization experiment of
Section V-A. After training, we perform 20 inference steps of
inference on all xi. Within 20 steps the model is able to find
depth optima for 87.5% of the functions and obtains 92.6% of
the total potential improvement.

For this experiment it is crucial to note that depth is a global
feature of MIGs. In this experiment our node representations
consist of features derived from a local receptive field. As such,
it is likely that they do not contain global depth information. In
Section V-D we add critical path features in order to perform
depth optimization for a number of circuits from the MCNC
benchmark suite.

D. MCNC Case Study

The previous experiments focus on the optimization of
relatively small functions. The experiments in this section
explore the potential of our approach to scale to more realistic
benchmarks. We select a subset of circuits from the MCNC
benchmark suite and train our model to optimize them.
We select this subset due to memory limitations of current
implementation, preventing us from working on some of larger
MCNC functions. However, this is strictly a technicality of our
current implementation, and not a fundamental limitation of
our approach.



TABLE II: Depth optimization on three circuits of the MCNC
benchmark suite. Our trained neural networks model (DNN)
outperforms resyn2 (ABC) in all of these cases.

Benchmark I/O Initial depth ABC DNN Improvement

b9 41/21 10 8 7 12.5%
count 35/16 20 19 10 47.4%
my adder 33/17 49 49 42 14.3%

We experiment with both size and depth optimization. In the
first experiment we perform size optimization on the C1355
benchmark. We train the model for 250 iterations on this single
circuit. Using 200 inference steps the model is able to reduce
the size of the circuit by 98 nodes, reducing the circuit from its
original size of 504 nodes down to 406 nodes. Analogous to
Section V-B, we use resyn2 as the heuristic optimal. It reduces
the size of C1355 to 390 nodes. In other words, our model is
able to obtain 86% of potential improvement as compared to
the state-of-the-art.

In the second experiment we select 3 other benchmarks and
train a DNN model to perform depth optimization on them. As
noted in Section V-C, depth optimization requires non-local
features. We therefore add critical path features to the node
representations. The one-hot representation of each node is
augmented with a single binary feature indicating presence on
the critical path. After training, we use 50 inference steps to
optimize depth. The results are summarized in Table II. We
obtain significant improvements compared to resyn2, ranging
from 12.5% to 47.5%, with an average of 24.7%.

VI. CONCLUSIONS AND FUTURE WORK

Our algorithm achieves 100% of potential size improvement
for 3-input functions, 83% for 4-input functions, and 89.9%
for a large set of DSD functions. After preprocessing, it is able
to improve on the state-of-the-art for 12% of DSD functions,
removing between 1 and 9 additional nodes. A case study of
an MCNC benchmark shows that we are able to obtain 86% of
potential improvement, demonstrating its application to realistic
circuits. Finally, we show that our optimization algorithm is
generic by applying it to depth optimization. We find 89% of
the depth-optimum MIGs for all 3-input functions within 20
steps of inference, and obtain 92.6% of potential improvement.
Applying depth optimization to the MCNC benchmark circuits
in our case study, we improve upon the state-of-the-art, with
improvements ranging from 12.5% to 47.4%.

This paper shows for the first time the applicability of
machine learning to logic synthesis. We demonstrate that it
is possible to create an automatic and generic optimization
procedure that obtains results that are close to—and even sur-
pass—those of heavily specialized state-of-the-art algorithms.
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