
SAT-based Exact Physical Design
for Field-coupled Nanocomputing Technologies

Marcel Walter∗, Winston Haaswijk†, Robert Wille‡§¶, Frank Sill Torres‖, Rolf Drechsler∗§

∗Group of Computer Architecture, University of Bremen, Germany
†Cadence Design Systems, Inc., San Jose, CA, USA

‡Institute for Integrated Circuits, Johannes Kepler University Linz, Austria
§Cyber Physical Systems, DFKI GmbH, Bremen, Germany

¶Software Competence Center Hagenberg GmbH (SCCH), Austria
‖Department for the Resilience of Maritime Systems, DLR, Bremerhaven, Germany

Abstract—Field-coupled Nanocomputing (FCN) is a class
of emerging post-CMOS technologies. It includes devices
such as Quantum-dot Cellular Automata (QCA), Nanomagnet
Logic (NML) devices, and Silicon Dangling Bonds (SiDB). Since
they do not rely on the flow of electric current, the promise
of these technologies is to overcome the physical limitations
of conventional solutions such as CMOS, by allowing for high
computational throughput with low power dissipation. Despite
their promise, FCN design automation is still in its infancy.
State-of-the-art solutions map logic networks obtained from
conventional synthesis approaches to FCN circuit layouts, even
though, those networks have not been generated with routability
for the tight FCN design constraints in mind. In this paper,
we take advantage of recent developments in SAT-based exact
logic synthesis by adapting methods from topology-based exact
synthesis yielding a one-pass flow that starts with a logic
description and combines synthesis with physical design of FCN
circuit layouts using arbitrary topologies. We implemented this
algorithm as an open-source library which we then integrated
into an existing FCN design tool. Our experimental evaluation
shows how our algorithm can be used to generate the most area
efficient circuit layouts for given functions compared to the state-
of-the-art.

I. INTRODUCTION

Worldwide energy consumption allotted to information and
telecommunication systems is growing. Some scenarios predict
that the sector could reach as much as 51 % of global electricity
usage by 2030 and thereby contribute up to 23 % of the globally
released greenhouse gases [1].

Consequently, there is an increasing interest in alternative
technologies that enable fast computations with considerably
lower energy dissipation compared to state-of-the-art CMOS
transistors. Field-coupled Nanocomputing (FCN) [2] is a class
of emerging technologies and is constantly gaining more
attention. In contrast to conventional technologies, FCN con-
ducts computations without any electric current flow—allowing
operations with a remarkable low energy dissipation that is
several magnitudes below current CMOS technologies [3],
[4]. This promising outlook motivated explorations into its
feasibility which led to several suitable contributions to the
physical implementation of FCN technologies in the last couple
of years [5]–[8].

Motivated by these promising implementations, research on
physical design algorithms began. Unfortunately, this task in
FCN is not compatible with a classical placement of gates
and routing of wires because much tighter domain-specific

constraints apply. In FCN, clocking is a critical factor of
combinational and sequential circuits alike because it directs
the data flow and, at the same time, controls information
synchronization. Among other obstacles, these clocking con-
straints are one limiting factor of the already NP-hard design
automation for FCN circuitry—as they prevent the applicability
of conventional VLSI approaches—despite significant efforts
in the development of corresponding methods [9].

While many existing FCN circuit layouts have been ob-
tained (partially) by human labor, e. g. [10], [11], also some
fully-automatic exact and heuristic approaches for physical de-
sign exist, e. g. [12]–[15]. Those overcome the aforementioned
clocking constraints by relying on regular clock topologies,
so-called clocking schemes, onto which AIGs and MIGs as
Boolean function representations are then mapped. Given a
specific clocking scheme, unfavorably structured logic networks
or suboptimal technology mapping can lead to tremendous
overhead in both circuit area and delay.

Nevertheless, all existing techniques do utilize conventional
logic synthesis algorithms for generating their graph-based
logic descriptions even though those have not been developed
with an understanding of FCN clocking schemes in mind.
Consequently, inevitably this will lead to area overhead even
when using the most sophisticated layout algorithms possible
as long as they perform a direct mapping of the given network.
However, so far, to the best of our knowledge, this is what
all existing FCN layout algorithms do due to the absence of
specialized logic synthesis.

In this paper, we take advantage of recent developments
in SAT-based exact logic synthesis by adapting methods
from topology-based exact synthesis yielding a one-pass flow
that starts with a logic description and combines synthesis
with physical design of FCN circuit layouts using arbitrary
topologies. Thereby, relevant logic can be directly synthesized
onto a clocking scheme avoiding overhead which grants the
smallest possible circuit layouts in terms of area.

The rest of this work is structured as follows. To keep
the paper self-contained, Section II reviews FCN concepts in
detail and provides background on logic synthesis. Section III
presents our novel SAT-based synthesis approach for FCN that
we evaluate experimentally in Section IV. Finally, Section V
concludes the paper.

(a) Binary 0 and binary 1 state

(b) Wire segment (c) Majority gate

Fig. 1: Elementary QCA cell devices

II. PRELIMINARIES

This section reviews background on Field-coupled Nanocom-
puting and SAT-based exact logic synthesis which are the
main aspects of this paper and are therefore necessary for
understanding the remainder of this work.

A. Field-coupled Nanocomputing

This section provides background on Field-coupled
Nanocomputing (FCN) and, by this, a basis for the remainder
of this work. FCN can be considered as a concept that
is being used as an umbrella term for a class of physical
implementations that conduct computations based on the same
principles.

Some prominent representatives of the FCN class are
Quantum-dot Cellular Automata (QCA, [16], [17]), Nanomag-
net Logic (NML, [18]), and Silicon Dangling Bonds (SiDB, [5],
[7], [19]). Even though their physical properties differ and most
of them are again divided into sub-categories, their abstract
models are nearly identical which makes most algorithmic
considerations applicable to the entire FCN class. For the
sake of brevity, we therefore only review aspects of QCA-like
technologies in this section and will use them as a running
example for all further illustrations in this paper because we
abstract from physical properties later on anyways. We refer
the inclined reader to the cited original works for further
information on the different technologies.

Generally, FCN circuits are implemented using elements that
interact via local fields that are usually called cells. In QCA,
a cell is composed of four (or six) quantum dots which are
able to confine an electric charge each and that are arranged at
the corners (and the center) of a square [20]. Adding two free
and mobile electrons, that are able to tunnel between adjacent
dots, into each cell, yields two stable states due to Coulomb
interaction, i. e. the two electrons tend to locate themselves at
opposite corner quantum dots. Tunneling to the outside of the
cell is prevented by a potential barrier.

Each of the two states is called a cell polarization, namely
P = −1 and P = +1 which can be defined as binary 0 and
binary 1. Fig. 1a depicts these two states of a conceptualized
QCA cell. The square denotes the potential barrier to the outside
world electrons cannot overcome, quantum dots are illustrated
by the four circles, and the two black bullets represent electrons
occupying a quantum dot.

Fig. 2: A sequence of five consecutive clock phases as seen
from the perspective of some wire segments

When composing a structure of several FCN cells adjacent
to each other, field interactions cause the polarization of one
cell to influence the polarization of the others.

Example 1. Fig. 1b shows how to arrange multiple cells in a
row to build a wire segment. It transmits binary information
from left to right or vice versa as the same field interactions
happen across the cell boundaries and thereby affect the
polarization of adjacent cells. This formation is extended in
Fig. 1c to construct a Majority gate where three input cells
(e. g. top, left, and bottom) compete for the polarization of the
center cell that eventually transmits its value to the output cell
(e. g. the right one). By setting one input to a constant value,
AND and OR gates can easily be constructed from Majority
gates, too.

While single gates and wire segments can be built this
way, signals in larger designs get increasingly meta-stable.
Furthermore, FCN structures as reviewed so far do not employ
an information flow direction. Both issues are circumvented
by clocking which is a fundamental aspect of combinational
and sequential FCN circuits alike. In fact, all cells must be
associated to an external clock that controls the initialization,
holding, and resetting of their states. In case of QCA, an
external electric clock controls the tunneling within the cells.
Depending on the technology, each cell changes during a
complete clock cycle between up to four different phases, i. e.
a switch, a hold, a reset, and a neutral phase. Usually, four
external clocks numbered from 1 to 4 are applied, whereby
each clock controls a selected adjacent set of cells and is shifted
by 90° compared to its predecessor. Furthermore, information
flows from cells controlled by clock 1 to cells controlled by
clock 2 etc. and eventually back to cells controlled by clock 1
again. An example illustrates the concepts.

Example 2. Fig. 2 depicts on the left a wire consisting of four
segments, each composed of five QCA cells grouped together
in boxes of different gray shades. Additionally, the cells are
tinted in a color depending on their group. Both, the gray
shade of the boxes and the tinting visualizes the assigned clock
whose number can also be found in each box’ bottom right
corner.

Right next to each group is a curve that symbolizes its
clock phases with time being plotted on the x-axis and dashed
lines indicating time steps. Additionally, the annotated QCA

(a) 2DDWave [22] (b) USE [23] (c) RES [24]

Fig. 3: Clocking schemes for FCN circuit layouts

cells indicate the stabilization and destabilization of their
states by vanishing and reappearing electron configurations.
For instance, group 1 starts in the switch phase, in which
the inter-dot barriers are being raised and so does the clock
curve. In this phase, the cells can accept information from
their predecessors. In the next time step, the clock has reached
the hold phase and the cells thereby cannot change their
polarization anymore. Hence, they influence the cells in clock
zone 2 right below which are in the switch phase at the same
time to assume their value, and so on. Thereby, information
propagates from the top to the bottom, i. e., from clock zone 1
to 2, from 2 to 3, and from 3 to 4.

For the longest time, it was assumed by designers that these
clock zones could be of arbitrary size and contain varying
amounts of cells. Creating fully clocked circuit layouts in
this so-called cell-based paradigm was comparably easy as
the clocking could be added after laying out the gates and
wires. However, the cell-based paradigm was proven to yield
unfabricable or incorrect circuits in the recent past [8], [21].
Hence, nowadays state-of-the-art in FCN design follows the
so-called tile-based paradigm in which all clock zones have a
uniform (square) shape and are arranged in a repetitive clocking
scheme. Each tile in a clocking scheme can hold up to one
elementary device from an associated gate library.

Example 3. Fig. 3 depicts cutouts of size 4 × 4 tiles of
three common clocking schemes mostly used for QCA-like
technologies. They can all be extrapolated seamlessly in all
directions but provide different assets and drawbacks.

Consider the 2DDWave clocking scheme as sketched in
Fig. 3a. It forms one of the simplest floor plans where each
counter diagonal is assigned the same clock number. This
way, the incoming information flow to a tile is solely possible
from the northern and western directions while the outgoing
information flow from a tile always has to utilize the eastern
or southern directions. That inherently restricts the scheme
in multiple ways, since e. g. (1) sequential circuits cannot be
realized due to the lack of feed-back loops and (2) neither
Majority gates nor 3-output fan-outs are possible due to the
maximum input and output degree of 2 for each tile.

This last issue is a problem with the USE clocking scheme
sketched in Fig. 3b as well. While USE indeed allows feed-
back, its tiles’ maximum input and output degree is also 2. The
RES scheme sketched in Fig. 3c overcomes this restriction and
allows for feedback, Majority gates, and 3-output fan-outs in
certain tiles. However, due to the increased degree in some
tiles, the degree in other tiles must naturally be lower as we are
still facing a 2-dimensional grid structure. Therefore, circuit
layouts tend to become more widespread in the RES scheme

(a) AND (b) INV (c) Wire (d) Fan-out

Fig. 4: Tiles in QCA ONE implementation

and consequently have higher area costs and longer critical
paths in placement & routing case studies [24].

Several gate libraries have been proposed for various FCN
technologies. In this paper, we utilize the QCA ONE library [25]
for visualizations that proposes tiles of size 5× 5 QCA cells.
Implementations of an AND gate, an inverter, a wire segment
and a fan-out are shown in Fig. 4.

B. Exact Synthesis
Exact synthesis refers to a class of logic synthesis methods

that are capable of yielding results to logic synthesis problems
in a way that is somehow exact with respect to their specifi-
cation. Given a Boolean function Bn → Bm and some r ∈ N,
consider the following examples:

1) Synthesize multi-output exclusive-sum-of-products
(ESOP) expression with exactly r cubes that represents f .

2) Synthesize a logic network with exactly r gates that
computes f .

These are two problems in two different logic representations
for which we have to exactly match the specification function f
and size parameter r.

Various exact synthesis methods have been developed. The
Quine-McCluskey algorithm and Petrick’s method are well-
known for the minimization of SOPs [26], [27]. Similar meth-
ods have been developed for so-called exclusive SOPs (ESOPs)
as well [28]. In multi-level logic synthesis, there are different
exact minimization algorithms such as the decomposition
techniques of Ashenhurst, Curtis, Davidson, and Roth and
Karp [29]–[32]. More recently, enumeration-based techniques
were developed by Knuth and Amaru [33], [34].

The advantage of exact logic synthesis is that it can be
used to synthesize optimum representations with respect to
different cost functions. For example, the r parameter can
be used to specify depth as well as size. By varying this
parameter we can then use an exact synthesis algorithm to
determine representations of different depths or sizes. The term
exact synthesis is commonly used to refer to this approach that
obtains optimum logic representations.

The disadvantage of exact synthesis is its high computational
complexity. For example, determining minimum SOP repre-
sentations with the algorithm is NP-hard since it is equivalent
to the Set cover problem [35]. In multi-level exact synthesis,
determining the minimum-size logic network for a function
is equivalent to the Minimum circuit size problem (MCSP).
The multi-output version of the MCSP was recently proved to
be NP-hard [36]. It is currently not known if this result also
holds for single-output functions, although strong evidence in
that direction exists [37].

C. Boolean Satisfiability
The Boolean satisfiability problem (SAT) is the canonical
NP-complete problem in which one is given a set of Boolean

variables X and a Boolean formula φ(x1, . . . , xn), xi ∈ X and
asked to determine whether there exists a variable assignment
π : X → B such that φ(π(x1), . . . , π(xn)) = 1.

In the past two decades, there has been a lot of progress in
the development of advanced algorithms and data structures
for SAT solvers; compute engines dedicated to solving the
SAT problem. Techniques such as DPLL search, watch lists,
clause learning, and non-chronological backtracking have
greatly improved the efficiency of such solvers [38]. Current
state-of-the-art solvers regularly deal with formulas consisting
of millions of variables and clauses [39].

Since SAT is NP-complete, all problems in P and NP can
be reduced to it, allowing us to use SAT solvers to determine
their solutions. The convenience of this approach is that we
do not have to develop separate algorithms for each task.
Instead, we can use SAT solvers as generalized problem solving
engines. Many problems in logic synthesis have a natural SAT
formulation, as they tend to deal with Boolean variables natively.
Combined with the progress of SAT solvers, this has led to
the development of many SAT-based algorithms. They range
from combinational equivalence checking and SAT sweeping
to automatic test pattern generation, resubstitution, and logic
synthesis [40]–[44]. Conversely, logic synthesis methods have
also been used to improve the efficiency of SAT solvers [45].

D. SAT-based Exact Synthesis
The progress made in SAT solving coupled with increases

in compute power have led to a resurgence of exact synthesis
algorithms based on SAT solver backends. In the two-level
domain, SAT-based algorithms for exact ESOP synthesis
have been developed for both classical and quantum logic
synthesis [46], [47]. In multi-level synthesis, we can find exact
synthesis methods for specific data structures such as majority
inverter graphs (MIGs) and XOR-majority graphs (XMGs) as
well as for arbitrary k-LUT logic networks [48], [49]. The
intractability of SAT means that such methods can only be used
to synthesize small multi-level representations. However, they
have been successfully integrated into large-scale synthesis
algorithms such as DAG-aware logic rewriting using network
partitioning techniques like cut generation and windowing [50].

To mitigate the potentially exponential runtime of SAT,
various techniques have been applied. These include as the
development of alternative CNF encodings, the addition of sym-
metry breaking clauses, and the use of counterexample-guided
abstraction refinement (CEGAR) [51]–[53]. State-of-the-art al-
gorithms have started to incorporate DAG topology information
in the synthesis loop, which leads to the creation of a hybrid
algorithm in which the SAT search space is reduced. This has
been shown to unlock significant speed-ups [54]. Further, it
has been shown that graph topology families can be used to
parallelize SAT-based exact synthesis [55].

In this paper, we take advantage of recent developments
in topology-constrained multi-level exact logic synthesis algo-
rithms. We find that, with some small changes, the techniques
used in [54] and [55] can be adapted to the design of FCN
circuits, yielding the first one-pass solution in this domain.

III. TOPOLOGY-BASED EXACT SYNTHESIS FOR FCN

In this section, we describe our FCN exact one-pass synthesis
method. Section III-A provides a high-level overview in which

we describe how the physical synthesis problem is specified and
executed. We also highlight the differences with conventional
exact logic synthesis. Next, in Section III-B, we give a
detailed description of the CNF encoding. The method has
been implemented as a Python package named Mugen. This
implementation is discussed in Section IV where we also
demonstrate its use with sample code.

A. Method Overview

We present a SAT-based algorithm for one-pass synthesis of
FCN circuit layouts. Its input is a logic specification in terms
of a multi-output truth table together with a clocking scheme
that serves as the topology and a gate library that defines
the operations to use. Its output is an FCN circuit layout of
optimal area in terms of tiles that computes the given function.
The algorithm is parameterizable to incorporate various design
elements that can be found in the literature. These include but
are not limited to the use of different clocking schemes, gate
libraries, wire-crossings, and I/O configuration (e. g. the use of
designated I/O pins). Moreover, it is able to generate multiple
different circuits from the same specification.

We like to highlight that conventional SAT-based logic syn-
thesis differs from the approach we are proposing here in many
ways due to the domain-specific constraints the technology
imposes. We briefly discuss some of these differences in the
following:

1) Different gate types and arities: Different clocking
schemes allow different gate types to be used. For example, the
USE clocking scheme does not allow the 3-input Majority gate.
Moreover, not all gate types correspond to operations with the
same arity. Finally, clocking schemes allow for some parts of
the layout to remain unused and empty. In logic synthesis, this
corresponds to gates with no fan-in and no fan-out. Typically,
this is not allowed in SAT-based exact synthesis.

2) Fan-out restrictions: Different configurations of clocking
schemes place various types of restrictions on primary input
and gate fan-outs. For example, each primary input may be
read only once. The same holds for most gate types. This is
different from the conventional logic synthesis paradigm, in
which logic sharing is encouraged to compress representations.
In FCN, a designated fan-out element is required to copy a
signal to two different paths.

3) I/O restrictions: In some clocking schemes, internal gates
cannot refer to I/O signals directly. Rather, I/O signals are
provided by dedicated I/O pins. Again, this is different from
most logic synthesis representations.

4) Cycles: The potential (virtual) connections specified by
clocking schemes may contain cycles (e. g. USE and RES). This
is very different from conventional multi-level logic synthesis
in which the directed acyclic graph (DAG) is a central data
structure. The connections are not meant to be part of the
final design which must still be acyclic. However, they are an
important part of the FCN problem specification.

5) Geometry: The geometry specified by a clocking scheme
is of significant importance. First, the clocking scheme de-
termines a grid graph and fixes the maximum number of
components that can be used as well as their location on
the graph. As mentioned earlier, we refer to nodes on the
grid graph as tiles. Second, the virtual connections specified
by the scheme determine the legal directions in which data

flows through the graph. We refer to these edges as virtual
because they may or may not be used in the final design. Rather,
they specify which potential internal connections the scheme
allows. We can think of these connections as specifying a partial
topology, similar to the fences and partial DAGs defined in [55].
Depending on the scheme, a node on the graph may have fan-in
and fan-out coming from any of the cardinal directions: north,
east, south, and west. Which direction are fan-in and which
are fan-out is determined by the clocking scheme. Moreover,
some directions may be used for both fan-in and fan-out. In
logic synthesis, there is typically no such a notion of an input
direction. The order of inputs to a gate may matter, but only
if the gate realizes an asymmetrical function. However, in a
clocking scheme, it is important that we take physical direction
into account: every tile has definite input and output directions.
Moreover, if it has multiple virtual fan-outs, it must enable
and disable certain directions depending on how the circuit
is routed. Finally, geometry also determines the gate types
supported at each tile. For example, if a tile has only two
possible fan-in directions it cannot possibly support a Majority
gate, even if it such gates are generally allowed by the clocking
scheme.

Given a clocking scheme, a multi-output truth table, and
further configurations, these specifications are compiled to a
CNF encoding which is described in detail in the next section.
A SAT solver then synthesizes and enumerates all circuits that
satisfy the clocking scheme and functions.

B. CNF Encoding
We base our CNF formulation on the SSV encoding which is

described in [55]. SSV is used for the synthesis of homogeneous
normal k-input logic networks. Hence, there are several
substantial differences in our encoding (see Section III-A).
The correctness of our encoding follows from SSV. A more
formal justification can be found in [55].

In this synthesis problem, we are given a clocking scheme
of size W × H as well as a multi-output Boolean function
f = (f1, . . . , fm) : Bn → Bm over n variables x1, . . . , xn.
We identify each tile in the layout by its coordinates (x, y).
The top-left corner of the clocking scheme is identified by
(0, 0), so we have 0 ≤ x < W and 0 ≤ y < H . The gate
types supported by tile (x, y) depend on the user specification
(i. e. which types they enabled) as well as the local geometry.
The same holds for its potential fan-in/fan-out connections.
Therefore, we construct the following sets for each tile:

I(x,y) : fan-in directions for (x, y)

Ω(x,y) : fan-out directions for (x, y)

∆(x,y) : primary I/O directions for (x, y)

Ĩ(x,y) : potential fan-ins for (x, y)

Ω̃(x,y) : potential fan-outs for (x, y)

Θ(x,y) : enabled gate types for (x, y)

These sets can be constructed by a simple procedure which
checks the local connectivity for each tile and refers to the
clocking scheme specifications. Note that we have I(x,y) ∪
Ω(x,y) = {north, east , south,west}.

Every tile must choose some gate type, so Θ(x,y) 6= ∅. We
always enable the special type ε, which corresponds to the

empty tile. We write φι̃(ι̃) = k to indicate that fan-in option ι̃
has k fan-ins. Similarly, we write φθ(θ) = k to indicate gate
operator arity.

For tile (x, y), we then create the following variables, for
1 ≤ h ≤ m, ω ∈ Ω(x,y), δ ∈ ∆(x,y), ι̃ ∈ Ĩ(x,y), θ ∈ Θ(x,y),
ω̃ ∈ Ω̃(x,y), and 0 ≤ t < 2n:

x(x,y)ωt : tth bit of (x, y)’s truth table in direction ω
gh(x,y)δ : fh(x1, . . . , xn) points to (x, y)’s output port δ
s(x,y)ι̃ : (x, y) selects fan-in ι̃
t(x,y)θ : (x, y) has gate type θ
c(x,y)ω̃ : (x, y) is connected to ω̃

The gh(x,y)δ variables are generated only if ∆(x,y) 6= ∅.
We constrain these variables by a set of clauses which

ensures that (1) the circuit both computes the correct functions
and (2) the circuit satisfies all requirements of the clocking
scheme.

For each (x, y), ω ∈ Ω(x,y), and 0 ≤ a, b, c ≤ 1, the
following constraints ensure that the circuit simulates the
correct function at each coordinate:

(s̄(x,y)ι̃ ∨ t̄(x,y)θ ∨ (xι̃(1)t ⊕ a) ∨ (x(x,y)ωt ⊕ θω(a))) if φ(θ) = 1

(s̄(x,y)ι̃ ∨ t̄(x,y)θ ∨ (xι̃(1)t ⊕ a) ∨ (xι̃(2)t ⊕ b) ∨ (x(x,y)ωt ⊕ θω(a, b))) if φ(θ) = 2

(s̄(x,y)ι̃ ∨ t̄(x,y)θ ∨ f(xι̃(1)t ⊕ a) ∨ (xι̃(2)t ⊕ b) ∨ (xι̃(3)t ⊕ c) ∨ (x(x,y)ωt ⊕ θω(a, b, c))) if φ(θ) = 3

With some abuse of notation, we use ι̃(k) here to refer to
the k-th fan-in for fan-in option ι̃, and θω(a) to refer to the
result of applying the Boolean function corresponding to gate
type θ in output direction ω. For all clauses, we ensure that
φι̃(ι̃) = φθ(θ).

We describe the intuition behind these clauses for the case
φθ(θ) = 2. The other cases are analogous. If (x, y) has inputs
i1 = ι̃(1) and i2 = ι̃(2) and (x, y) is of type θ and the tth bit
of i1 is a and the tth bit of i2 is b then it must be the case
that x(x,y)ωt = θω(a, b). This can be more easily understood
by rewriting the constraint as follows:

((s̄(x,y)ι̃∧t̄(x,y)θ∧(xι̃(1)t⊕ā)∧(xι̃(2)t⊕b̄))→ (x(x,y)ωt⊕ θω(a, b)))

Note that a, b, and c are constants which are used to set the
proper variable polarities.

Let (b1, . . . , bn)2 be the binary encoding of truth table
index t. In order to fix the proper output values, we add the
clauses (ḡh(x,y)δ ∨ x̄(x,y)δt) or (ḡh(x,y)δ ∨ x(x,y)δt) depending
on the value fh(b1, . . . , bn). Next, for each output, we add∨W
x=0

∨H
y=0 gh(x,y)δ. This ensures that every primary output

points to the output port of some tile. Each tile must select
some gate type, so we add

∨
θ∈Θ(x,y)

t(x,y)θ.
Clocking schemes can contain cycles, so we must add

clauses to ensure that the final design does not. We achieve
this by first detecting all cycles in the graph and then
using the connection variables c(x,y)ω̃ to prevent them. Let
((x0, y0), (x1, y1), . . . , (xn, yn), (x0, y0)) be a cycle. We then
add the clause

∨n
i=0 c̄xiyi(x(i+1 mod n),y(i+1 mod n)). We must

further ensure that a c(x,y)ω̃ is set to true whenever fan-out
ω̃ selects (x, y) as fan-in. To that end, for all ω̃ ∈ Ω̃(x,y) and
ι̃ ∈ Ω̃ω̃ we add (s̄ω̃ι̃ ∨ c(x,y)ω̃) if (x, y) ∈ ι̃.

We have now described the main clauses. We use some
additional clauses to satisfy various cardinality constraints.

Create a new 3x3 clocking scheme.
g = scheme_graph(shape=(3,3))
We want to specify the USE scheme,
so we disable majority gates.
g.enable_maj = False
Next, we specify the virtual
potential connections between
nodes on the grid.
g.add_virtual_edge((0, 0), (1, 0))
g.add_virtual_edge((1, 0), (2, 0))
Some connections omitted for
brevity.
...
g.add_virtual_edge((2, 2), (2, 1))
The list of functions the circuit
must compute. In this case we
specify a 2:1 MUX.
functions = [[0,0,1,1,0,1,0,1]]
Enumerate the different circuits
which satisfy the specification.
for net in g.synthesize(functions):
g.satisfies_spec(net, functions)
yield net

Listing 1: An example of FCN physical design with Mugen

These include constraints to ensure that PIs have at most single
fan-out, tile output ports may be used only once, and making
sure that every tile selects at least some fan-in option (unless
it is an empty tile).

IV. EXPERIMENTAL EVALUATION

In this section, we discuss our setup for an experimental
evaluation and present respective results. First, in Section IV-A
we discuss integration of Mugen with an existing design tool
for FCN and go over the specifications of the system used in
the following evaluation. In Section IV-B, we compare Mugen
against a state-of-the-art exact placement & routing algorithm
for FCN [14]. In Section IV-C, we utilize Mugen to generate
FCN circuit layouts for NPN classes on different clocking
schemes, and, finally, in Section IV-D, we discuss notable
findings we made in the process that we hope provide valuable
knowledge to both the logic synthesis and the FCN community.

A. Experimental Setup

Our proposed package Mugen is open source and available
to the public at https://github.com/whaaswijk/mugen. We have
integrated it into the open-source FCN design framework
fiction [56] using pybind11 [57]. Listing 1 contains a code
example in which the user specifies a 3× 3 USE topology to
synthesize a 2:1 MUX.

All evaluations in the following sections were run on a
Fedora 28 machine with an Intel Xeon E3-1270 v3 CPU
with 3.50 GHz (up to 3.90 GHz boost) and 32 GB of main
memory. The underlying SAT solver used by Mugen was
Glucose 3.0 [58].

All resulting designs and simulation files for QCADe-
signer [59] were made publicly available at https://github.com/
marcelwa/IWLS2020FCN.

TABLE I: Comparison against exact placement & routing [14]

Exact P&R [14] Proposed approach
Function A CP t in s A CP t in s

2:1 MUX 9 5 < 1 9 5 1
XOR 9 5 < 1 9 5 19
XNOR 16 8 2 16 8 19
Half adder 25 10 13 16 8 42
c17 30 16 56 18 10 331
ParGen 42 14 791 — — TO
ParCheck 48 16 1140 — — TO
4:1 MUX 49 22 5131 — — TO

A Area in tiles given by the layout’s bounding box
CP Critical path in tiles
TO Timeout reached

B. Comparison Against Exact Placement & Routing
As mentioned in Section II, the default approach to FCN

physical design is placement & routing of readily synthesized
logic networks like AIGs or MIGs onto a clocking scheme. The
biggest drawback with this approach is that those networks
have been obtained from conventional synthesis algorithms
and were not optimized to be routable on FCN topologies. A
common assumption in the FCN community is that overhead
due to wire routing could be reduced by tailoring the logic
network to the clocking scheme. Consequently, when directly
comparing a layout obtained by optimal placement & routing
of a non-optimized logic network and a layout obtained by our
proposed topology-based synthesis approach, the latter must
never be worse in terms of area.

Walter et al. proposed an exact method for placement &
routing of QCA circuit layouts [14], i. e. a mapping of an
existing logic network to a clocking scheme. Table I compares
their obtained results against the ones we could generate using
our proposed one-pass synthesis on the same functions that
were taken from their work using the same configuration.

The column Function lists the function names that were
used as inputs to both approaches. The following columns A,
CP, and t in s repeat for both approaches and list the area of
the resulting circuit layout in tiles, its critical path in tiles, and
the time in seconds it took to obtain the results. In [14], the
authors listed the circuit area in terms of cells where each tile
would be composed of 5×5 QCA cells. We converted the area
values accordingly for Table I. Note that critical path was not
an optimization target in either algorithm but is listed for the
sake of completeness and because the authors listed it in [14]
as well. Note further that both approaches have been evaluated
on different hardware systems. Therefore, the runtimes are not
directly comparable but give a good approximation.

The first thing to notice is that our proposed approach has a
non-negligible runtime overhead compared to the placement &
routing approach and even timed out on three of the functions.
However, it was able to synthesize substantially smaller circuit
layouts for both the half adder and the c17 function while
yielding the same circuit area for the remaining functions. This
observation coincides with our initial assumption.

C. Synthesizing Circuit Layouts for NPN Classes
NPN classification determines if some single-output Boolean

functions are identical under permutation and negation of
their inputs and negation of their output. NPN classes are
of great interest in logic design because they tremendously
reduce the number of representatives that are to be considered

TABLE II: Area results for all 3-input NPN classes

2DDWave USE RES
NPN A #G #W A #G #W A #G #W

0x00 8 5 1 8 5 3 8 8 0
0x01 10 8 1 10 7 2 8 7 1
0x03 8 6 1 6 5 0 8 5 2
0x06 18 13 3 20 12 8 20 13 5
0x07 10 8 0 10 7 2 8 7 1
0x0f 4 3 0 4 3 0 4 3 0
0x16 27 18 8 32 18 14 32 21 10
0x17 20 15 3 24 13 12 9 6 1
0x18 24 16 7 28 15 14 30 14 11
0x19 18 14 3 20 14 6 20 13 7
0x1b 15 11 2 16 11 6 15 10 5
0x1e 18 12 3 24 15 10 24 13 9
0x3c 15 10 4 20 12 8 16 9 6
0x69 32 18 6 32 18 16 32 19 13

total 227 157 42 254 155 101 234 148 71

A Area in tiles given by the layout’s bounding box
#G Number of gates including I/O pins
#W Number of wire segments (counting crossings as 2)

when exhaustively enumerating function spaces without losing
expressive power. Permuting and negating primary pins shifts
complexity away from the designer and towards the integrator
on whose side these tasks are considered to be trivial in most
cases.

We considered all 3-input NPN classes and synthesized
their canonized representatives on the three clocking schemes
2DDWave, USE, and RES that are shown in Fig. 3. This (1)
provides us with a design library able to compute any Boolean
function in 3 variables on any of the three clocking schemes
with optimal area usage and (2) allows us to reason about
appropriateness of the clocking schemes that, to the best of
our knowledge, no method was able to do with an optimality
guarantee so far. While such a design library is crucial for
the development of hierarchical or cut-based physical design
approaches, the sense of appropriateness can guide designers
when setting their parameters. Furthermore, our method can
be used to rate future clocking schemes.

The results of our experiments are summarized in Table II.
The column NPN lists the truth tables of the canonized NPN
representatives in hexadecimal notation. These served as inputs
to the synthesis runs. The next columns A, #G, and #W repeat
for each of the three clocking schemes and list the necessary
minimal area in tiles, number of gates, and number of wire
segments respectively needed for an FCN circuit layout that
implements the given truth table. The final row total sums up
the respective columns.

It can be seen that the 2DDWave clocking scheme needed
the least amount of area and wire overhead to implement all
given functions. However, the RES scheme needed the least
amount of actual logic which is likely due to the fact that only
RES supports Majority gates. The USE clocking scheme had
the highest area and wire overhead.

D. Discussion
Since the FCN concept is still in its infancy, several

conjectures about its properties in the physical design process
could not be proven yet. For instance, it was unknown whether
a crossing-free QCA ONE layout implementation of the 2-input
XOR function exists that has all primary input and output pins
placed exactly once and in a position at the borders where they
are accessible. Since XOR is not an elementary gate in the QCA
ONE library, typically the composition a⊕ b = ¬(ab) · (a+ b)

(a) 2DDWave (b) USE (c) RES

Fig. 5: Crossing-free realizations of the 2-input XOR function

is used whose Boolean chain is non-planar when including the
layout borders as fix-points.

Mugen enabled us to settle this question. Fig. 5 depicts
crossing-free XOR implementations in the QCA ONE gate
library for all three clocking schemes investigated in this paper.1

Across this paper, we mentioned several times that it is
assumed that placement & routing generates an overhead in
terms of circuit area that is used for wire routing because
the logic networks that serve as inputs were not synthesized
with FCN routability in mind. While this work provides weak
evidence that even in exact placement & routing techniques
there indeed still is an overhead that could be eliminated
using our proposed approach, we found that the layouts we
synthesized need significantly more operations due to wire
routing than pure logic networks. We certainly expected some
overhead but were surprised by how large it actually is.

V. CONCLUSION

In this paper, we presented a SAT-based algorithm for exact
topology-guided one-pass synthesis for the physical design
of Field-coupled Nanocomputing (FCN) Technologies. This
algorithm is able to overcome the drawbacks of placement &
routing-based approaches that have to rely on pre-synthesized
logic networks that have not been generated with routability in
mind and need to be adjusted for every new clocking scheme.
We integrated our approach that we call Mugen with the publicly
available FCN design framework fiction and utilized it in an
experimental evaluation to support our claims. Furthermore,
we synthesized FCN layouts for all canonized 3-input NPN
representatives that can be used as building blocks in future
layout approaches. Additionally, with more research in the
area, our approach could even enable rewriting techniques on
the layout level to optimize existing designs by replacing sub-
layouts with their optimum counterparts. Finally, we were able
to answer the open question whether it is possible to generate
crossing-free QCA ONE layouts for the 2-input XOR function
by providing witnesses for three different clocking schemes.

ACKNOWLEDGMENTS

This work has partially been supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria
as well as by BMK, BMDW, and the State of Upper Austria
in the frame of the COMET Programme managed by FFG.

1Examples of XOR realizations that require less area can be found in
the literature, e. g. [60]. However, these are not synthesized from existing
well-proven gates, but are cell-based and hand-crafted. They do not guarantee
physical correctness and fabricability out-of-the-box and need to be further
verified in lab tests or quantum simulations [8].

REFERENCES

[1] A. S. G. Andrae and T. Edler, “On Global Electricity Usage of
Communication Technology: Trends to 2030,” Challenges, vol. 6, no. 1,
pp. 117–157, 2015.

[2] N. G. Anderson and S. Bhanja, Field-coupled Nanocomputing: Paradigms,
Progress, and Perspectives, 1st ed. New York: Springer, 2014.

[3] J. Timler and C. S. Lent, “Power Gain and Dissipation in Quantum-dot
Cellular Automata,” J. Appl. Phys., vol. 91, no. 2, pp. 823–831, 2002.

[4] F. Sill Torres, R. Wille, P. Niemann, and R. Drechsler, “An Energy-
Aware Model for the Logic Synthesis of Quantum-Dot Cellular Automata,”
TCAD, vol. 37, no. 12, pp. 3031–3041, 2018.

[5] S. Bohloul, Q. Shi, R. A. Wolkow, and H. Guo, “Quantum Transport in
Gated Dangling-Bond Atomic Wires,” Nano Letters, pp. 322–327, 2017.

[6] C. S. Lent et al., “Molecular Cellular Networks: A non von Neumann
Architecture for Molecular Electronics,” in ICRC, 2016, pp. 1–7.

[7] T. R. Huff, H. Labidi et al., “Atomic White-Out: Enabling Atomic
Circuitry through Mechanically Induced Bonding of Single Hydrogen
Atoms to a Silicon Surface,” ACS Nano, pp. 8636–8642, 2017.

[8] H. N. Chiu, S. S. H. Ng, J. Retallick, and K. Walus, “PoisSolver: a
Tool for Modelling Silicon Dangling Bond Clocking Networks,” 2020,
arXiv:2002.10541.

[9] M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler,
“Placement & Routing for Tile-based Field-coupled Nanocomputing
Circuits is NP-complete,” in JETC, 2019.

[10] E. Fazzion, O. L. Fonseca, J. A. M. Nacif, O. P. V. Neto, A. O. Fernandes,
and D. S. Silva, “A Quantum-dot Cellular Automata Processor Design,”
in SBCCI, 2014.

[11] M. Kianpour and R. Sabbaghi-Nadooshan, “A novel Quantum-dot Cellular
Automata CLB of FPGA,” J. Comput. Electron., pp. 709–725, 2014.

[12] F. Riente et al., “ToPoliNano: A CAD Tool for Nano Magnetic Logic,”
TCAD, vol. 36, no. 7, pp. 1061–1074, 2017.

[13] G. Fontes et al., “Placement and Routing by Overlapping and Merging
QCA Gates,” in ISCAS, 2018, pp. 1–5.

[14] M. Walter, R. Wille, D. Große, F. Sill Torres, and R. Drechsler, “An Exact
Method for Design Exploration of Quantum-dot Cellular Automata,” in
DATE, 2018, pp. 503–508.

[15] M. Walter, R. Wille, F. Sill Torres, D. Große, and R. Drechsler, “Scalable
Design for Field-coupled Nanocomputing Circuits,” in ASP-DAC, 2019,
pp. 197–202.

[16] C. S. Lent and P. D. Tougaw, “A Device Architecture for Computing with
Quantum Dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557,
1997.

[17] C. S. Lent, B. Isaksen, and M. Lieberman, “Molecular Quantum-dot
Cellular Automata,” Journal of the American Chemical Society, vol. 125,
no. 4, pp. 1056–1063, 2003.

[18] X. K. Hu et al., “Edge-Mode Resonance-Assisted Switching of Nano-
magnet Logic Elements,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1–4,
2015.

[19] R. A. Wolkow, L. Livadaru et al., Silicon Atomic Quantum Dots Enable
Beyond-CMOS Electronics. Springer-Verlag, p. 33–58.

[20] W. Liu, E. E. Swartzlander Jr, and M. O’Neill, Design of Semiconductor
QCA Systems. Artech House, 2013.

[21] E. Blair and C. Lent, “Clock topologies for molecular quantum-dot
cellular automata,” Journal of Low Power Electronics and Applications,
vol. 8, no. 3, 2018.

[22] V. Vankamamidi, M. Ottavi, and F. Lombardi, “Clocking and Cell
Placement for QCA,” in IEEE-NANO, vol. 1, 2006, pp. 343–346.

[23] C. A. T. Campos et al., “USE: A Universal, Scalable, and Efficient
Clocking Scheme for QCA,” TCAD, vol. 35, no. 3, pp. 513–517, 2016.

[24] M. Goswami et al., “An efficient clocking scheme for quantum-dot
cellular automata,” Electron. Lett., pp. 1–14, 2019.

[25] D. A. Reis et al., “A Methodology for Standard Cell Design for QCA,”
in ISCAS, 2016, pp. 2114–2117.

[26] W. V. Quine, “The Problem of Simplifying Truth Functions,” The
American Mathematical Monthly, vol. 59, no. 8, pp. 521–531, 1952.

[27] E. J. McCluskey, “Minimization of Boolean Functions,” Bell System
Technical Journal, vol. 35, no. 6, pp. 1417–1444, 1956.

[28] T. Sasao, “EXMIN2: A Simplification Algorithm for Exclusive-OR-Sum-
of Products Expressions for Multiple-Valued-Input Two-Valued-Output
Functions,” IEEE Trans. on CAD, vol. 12, no. 5, pp. 621–632, 1993.

[29] R. Ashenhurst, “The Decomposition of Switching Functions,” 1957, pp.
74–116.

[30] A. Curtis, New Approach to the Design of Switching Circuits. Van
Nostrand, 1962.

[31] E. S. Davidson, “An Algorithm for NAND Decomposition Under Network
Constraints,” IEEE Trans. Computers, vol. 18, no. 12, pp. 1098–1109,
1969.

[32] J. P. Roth and R. M. Karp, “Minimization Over Boolean Graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[33] D. E. Knuth, The Art of Computer Programming. Upper Saddle River,
New Jersey: Addison-Wesley, 2011, vol. 4A.

[34] L. Amaru, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P. E. Gaillardon,
J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay synthesis,”
in Int’l Conf. on Computer-Aided Design, 2017, pp. 352–359.

[35] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-
Hill, 1994.

[36] R. Ilango, B. Loff, and I. C. Oliveira, “NP-Hardness of Circuit
Minimization for Multi-Output Functions,” Electronic Colloquium on
Computational Complexity, Tech. Rep. 21, 2020.

[37] C. D. Murray and R. R. Williams, “On the (non) NP-hardness of com-
puting circuit complexity,” in Conference on Computational Complexity,
2015, pp. 365–380.

[38] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of
Satisfability. IOS Press, 2009.

[39] “Proceedings of SAT Race 2019 : Solver and Benchmark Descriptions,”
M. Heule, M. J.H. Järvisal, and M. Suda, Eds. Department of Computer
Science, University of Helsinki, 2019.

[40] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using sat for
combinational equivalence checking,” in Design, Automation and Test in
Europe, 2001, pp. 114–121.

[41] Qi Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli, “Sat
sweeping with local observability don’t-cares,” in Design Automation
Conference, 2006, pp. 229–234.

[42] A. Mishchenko and R. K. Brayton, “Sat-based complete don’t-care
computation for network optimization,” in Design, Automation and Test
in Europe, 2005, pp. 412–417 Vol. 1.

[43] Chih-Chun Lee, J. R. Jiang, Chung-Yang Huang, and A. Mishchenko,
“Scalable exploration of functional dependency by interpolation and
incremental sat solving,” in 2007 IEEE/ACM International Conference
on Computer-Aided Design, 2007, pp. 227–233.

[44] A. Petkovska, “Exploiting Satisfiability Solvers for Efficient Logic
Synthesis,” Ph.D. dissertation, EPFL, Lausanne, Switzerland, 2017.

[45] N. Een, A. Mishchenko, and N. Sörensson, “Applying logic synthesis for
speeding up sat,” in Theory and Applications of Satisfiability Testing –
SAT 2007, J. Marques-Silva and K. A. Sakallah, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 272–286.

[46] G. Meuli, B. Schmitt, R. Ehlers, H. Riener, and G. De Micheli,
“Evaluating esop optimization methods in quantum compilation flows,” in
Reversible Computation, M. K. Thomsen and M. Soeken, Eds. Cham:
Springer International Publishing, 2019, pp. 191–206.

[47] H. Riener, R. Ehlers, B. d. O. Schmitt, and G. D. Micheli, Exact Synthesis
of ESOP Forms. Cham: Springer International Publishing, 2020, pp.
177–194.

[48] M. Soeken, L. G. Amarù, P. Gaillardon, and G. De Micheli, “Exact
Synthesis of Majority-Inverter Graphs and Its Applications,” IEEE Trans.
on CAD of Integrated Circuits and Systems, vol. 36, no. 11, pp. 1842–
1855, 2017.

[49] W. Haaswijk, M. Soeken, L. Amarù, P. Gaillardon, and G. De Micheli,
“A novel basis for logic rewriting,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2017, pp. 151–156.

[50] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean Networks with Exact
Synthesis,” in Design, Automation and Test in Europe, 2019, pp. 1649–
1654.

[51] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, Counterexample-
Guided Abstraction Refinement. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 154–169.

[52] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Reading, Massachusetts: Addison-Wesley, 2015.

[53] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amarù, R. K.
Brayton, and G. De Micheli, “Practical exact synthesis,” in Design,
Automation and Test in Europe, 2018, pp. 309–314.

[54] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT Based
Exact Synthesis using DAG Topology Families,” in Design Automation
Conference, 2018, pp. 1–6.

[55] ——, “Sat-based exact synthesis: Encodings, topology families, and
parallelism,” TCAD, vol. 39, no. 4, pp. 871–884, 2020.

[56] M. Walter, R. Wille, F. Sill Torres, D. Große, and R. Drechsler,
“fiction: An Open Source Framework for the Design of Field-coupled
Nanocomputing Circuits,” 2019, arXiv:2002.10541.

[57] W. Jakob, “pybind11,” https://github.com/pybind/pybind11.
[58] G. Audemard and L. Simon, “Glucose: a solver that predicts learnt

clauses quality,” SAT Competition, pp. 7–8, 2009.
[59] K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner:

A Rapid Design and Simulation Tool for Quantum-dot Cellular Automata,”
TNANO, vol. 3, no. 1, pp. 26–31, 2004.

[60] M. R. Beigh, M. Mustafa, and F. Ahmad, “Performance Evaluation of
Efficient XOR Structures in Quantum-dot Cellular Automata (QCA),”
Circuits and Systems, pp. 147–156, 2013.

